Syntheses of C - and N-nucleosides from 1-aza-2-azoniaallene and 1,3-diaza-2-azoniaallene salts

Najim Al-Masoudi, Nasser A. Hassan, Yaseen A. Al-Soud, Patrick Schmidt, Alaa El-Din M. Gaafar, Min Weng, Stefano Marino, Annette Schoch, Atef Amer and Johannes C. Jochims *, \dagger
Fakultät für Chemie der Universität Konstanz, Postfach 78457, D-78434 Konstanz, Germany

C-Nucleosides are prepared by cycloaddition of 1-aza-2-azoniaallene salts 2 and 1,3-diaza-2-azoniaallene salts 5 to the triple bonds of a glycosylalkyne and of glycosyl cyanides. Thus, the glucosylalkyne 7 reacts with salts 5 to give the 4 -glucosyl-1,2,3-triazolium salt 8 . From the galactosyl cyanide 9 , the ribofuranosyl cyanide 13, and several 1-aza-2-azoniaallene salts 2 the glycosyl-1,2,4-triazoles 11, 15, 17 are obtained. Deacylation affords the free C-nucleosides $12,16,18$. Cycloaddition to the $\mathrm{C}=\mathrm{S}$ double bond of the glucosyl isothiocyanate 19 furnishes glucosylimino-1,3,4-thiaziazoles 20-22. A new method for the preparation of the isothiocyanate 19 is described.

The chemistry of N-nucleosides, the building constituents of DNA and RNA and the basis of many biologically active compounds, has been extensively reviewed. ${ }^{1,2}$ Since 1957, when pseudouridine [5-(β-D-ribofuranosyl)uracil] was first isolated from yeast DNA, ${ }^{3}$ the chemistry and biochemistry of naturally occurring and non-biogenic C-nucleosides has become a field of broad interest. ${ }^{1,4-9}$ A recent review on C-nucleosides comprises more than a thousand references. ${ }^{6}$

Recently, we described syntheses of the two new heterocumulenic cations 2 and 5. 1-Aza-2-azoniaallene ions $\mathbf{2}$ were found to undergo cycloaddition to the multiple bonds of alkenes, alkynes, isocyanates, carbodiimides, and nitriles to furnish pyrazolium ions 3 , which in most cases undergo spontaneous successive transformations. ${ }^{10-16}$ 1,3-Diaza-2-azoniaallene ions 5 (obtained from thiazenes 4) were reported to form 4,5 -di-hydro-1,2,3-triazolium ions 6 with alkenes ${ }^{17,18}$ (Scheme 1). We wondered whether these cycloadditions could be applied to syntheses of C - and N-nucleosides. Here we report our first results.

Results and discussion

The alkyne $\mathbf{7}$ is readily prepared by reaction of phenylethynylmagnesium bromide with $2,3,4,6$-tetra- O - α-d-glucopyranosyl bromide. ${ }^{19}$ There seems to be only a single report on 1,3 -dipolar cycloaddition of compound 7, describing addition of diazomethane across the triple bond to afford a glucosylpyrazole. ${ }^{20}$
No reactions could be achieved between alkyne 7 and several 1 -aza-2-azoniaallene salts 2. However, when compound 7 was subjected to reaction with the 1,3-diaza-2-azoniaallene salt 5 $\left(\mathrm{R}^{1}=\mathrm{R}^{2}=2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)^{17}$ prepared in situ from the chlorotriazene $4\left(\mathrm{R}^{1}=\mathrm{R}^{2}=2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)$ the triazolium salt $\mathbf{8}$ was isolated in 76% yield (Scheme 2). C-Glucosyl-1,2,3-triazoles seem to be unreported in the literature. ${ }^{6}$ Also, cycloadditions of 1,3-diaza-2-azoniaallene cations 5 to alkynes have not been reported before. This reaction is currently under close investigation.
C-Nucleosides are frequently prepared from glycosyl cyanides. ${ }^{6}$ 1-Aza-2-azoniaallene salts react especially smoothly with nitriles, ${ }^{10}$ so we tried cycloadditions of salts 2 to the nitrile groups of the C-glycosides 9 and 13. Crystalline cyanogalactoside 9 , easily accessible from acetylated galactose, ${ }^{21}$

[^0]
reacted with chloride $\mathbf{1 a}$ and antimony pentachloride to afford the crystalline triazolium salt 11a in 75% yield (Scheme 2). At $-60^{\circ} \mathrm{C}$, chloride $\mathbf{1 a}$ and antimony pentachloride give the heteroallene $\mathbf{2 a}$ as an orange precipitate. At $\sim-30^{\circ} \mathrm{C}$ dissolution of the precipitate and a colour change to brown indicated reaction with the nitrile 9. At temperatures above $-30^{\circ} \mathrm{C}$ the primarily formed product 10a furnished the end product 11a by [1,2] migration of a methyl group. ${ }^{10,13}$ The C nucleoside 11b was prepared correspondingly (84%). However, in this case the intermediate $\mathbf{1 0 b}$ lost a molecule of isobutene to give a protonated triazole, from which the nucleoside 11b was obtained by treatment with aq. sodium hydrogen carbonate. ${ }^{10,12}$ With sodium methoxide in methanol compound $\mathbf{1 1 b}$ was transformed into the crystalline free nucleoside $\mathbf{1 2 b}$ (77%). Thus cumulenes 2 with $\mathrm{R}^{2}=$ tert-butyl can be used to prepare electrically neutral 2-unsubstituted 1,2,4-triazoles. ${ }^{10,12}$

7

8

	R^{1}	R^{2}	R^{3}
\mathbf{a}	Me	Me	$2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$
\mathbf{b}	Me	Bu^{t}	$2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$
\mathbf{c}	Me	Bu^{t}	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$
\mathbf{d}	Me	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathrm{CO}_{2} \mathrm{Et}$
\mathbf{e}	Me	Me	$\mathrm{CO}_{2} \mathrm{Et}$
\mathbf{f}	Me	Me	$\mathrm{CCl}(\mathrm{Me})_{2}$
\mathbf{g}	Me	Pr^{i}	$\mathrm{CCl}(\mathrm{Me}) \mathrm{Pr}^{\mathrm{i}}$
\mathbf{h}	$\left(\mathrm{CH}_{2}\right)_{4}$	$\mathrm{CO}_{2} \mathrm{Et}$	
\mathbf{i}	$\left(\mathrm{CH}_{2}\right)_{5}$	$\mathrm{CO}_{2} \mathrm{Et}$	

Scheme 2 Reagents and conditions: i, $\mathrm{SbCl}_{5}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60$ to $0^{\circ} \mathrm{C}$, $2.5 \mathrm{~h}(76 \%)$; ii, $\mathrm{SbCl}_{5}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60$ to $23^{\circ} \mathrm{C}, 7 \mathrm{~h}$; iii (75%); iv, aq. $\mathrm{NaHCO}_{3}(84 \%)$; v, $\mathrm{NaOMe}, \mathrm{MeOH}, 23^{\circ} \mathrm{C}, 3 \mathrm{~h}(77 \%)$

While 1,2,4-triazole C-galactosides seem to be unreported, a few 1,2,4-triazole C-ribofuranosides are documented. ${ }^{22-27}$ These compounds were prepared as analogues of the synthetic N-nucleoside ribavirin (1- β-D-ribofuranosyl-1,2,4 triazole-3-carboxamide), which found clinical application because of its broad spectrum of activity against both DNA and RNA viruses. However, all C-analogues of ribavirin syn-
thesized so far seem to be devoid of any significant biological activity.

Notwithstanding these negative results we directed efforts into syntheses of new C-ribofuranosyl-1,2,4-triazoles starting from the nitrile $\mathbf{1 3}$ (Scheme 3). ${ }^{21}$

Scheme 3 Reagents and conditions: i, $\mathrm{SbCl}_{5}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60$ to $23^{\circ} \mathrm{C}$, 7 h; ii, aq. $\mathrm{NaHCO}_{3}, 23^{\circ} \mathrm{C}$ (resp. $48 \%, 84 \%$); iii, $\mathrm{NaOMe}, \mathrm{MeOH}, 23^{\circ} \mathrm{C}$, 3 h (resp. $84 \%, 51 \%$); iv, aq. $\mathrm{NaHCO}_{3}, 23^{\circ} \mathrm{C}(43-77 \%)$; v, NaOMe , $\mathrm{MeOH}, 23{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}(61-74 \%)$

No reaction could be induced between nitrile $\mathbf{1 3}$ and the 1,3-diaza-2-azoniaallene salt $5\left(\mathrm{R}^{1}=\mathrm{R}^{2}=2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)$. However, the 1-aza-2-azoniaallene salts $\mathbf{2 b}, \mathbf{c}$, formed as reactive intermediates from the (chloroalkyl)azo compounds 1b,c with antimony pentachloride, afforded the triazolyl ribosides $\mathbf{1 5 b}, \mathbf{c}$, and, after deblocking, the neutral nucleosides 16b,c in moderate yields. Heterocumulenes 2 were found to react with the nitrile 13 generally more sluggishly than with simple nitriles such as acetonitrile or benzonitrile. In order to compensate for some decomposition of salt $\mathbf{2}$ competing with cycloaddition to nitrile 13 the (chloroalkyl)azo compounds $\mathbf{1}$ had to be applied in up to four-fold molecular excess.
For unknown reasons no transformation could be induced between compounds $\mathbf{1 3}$ and $\mathbf{2 a}$ although salt $\mathbf{2 a}$ is sterically less encumbered than its analogue $\mathbf{2 b}$.
Another group of 2-unsubstituted 1,2,4-triazoles (compounds $\mathbf{1 7 d}-\mathbf{i}$) can be prepared from nitriles and salts $\mathbf{2}$ with $\mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Et}$ or $\mathrm{R}^{3}=\mathrm{CClR}^{4} \mathrm{R}^{5}$ (Scheme 3). ${ }^{12,16}$ The moisturesensitive iminium salts $\mathbf{1 4}$ were directly subjected to hydrolysis with aq. hydrogen carbonate to furnish the triazoles $\mathbf{1 7 d} \mathbf{d} \mathbf{i}$ in moderate yields. The nucleoside $\mathbf{1 7 e}(=\mathbf{1 7 f})$ was obtained from both (chloroalkyl)azo compounds $\mathbf{1 e}$ and $\mathbf{1 f}$ in comparable yields (57 and 54%). However, allenes prepared from compound 1 with $\mathrm{R}^{3}=\mathrm{CClR}^{4} \mathrm{R}^{5}$ are more reactive than those with $\mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Et} .{ }^{16}$ Therefore, for the preparation of compound 17e only a small excess of substrate if was required, leading to a cleaner product as compared with the reaction with substrate 1e. Debenzoylation of compounds $\mathbf{1 7 d}, \mathbf{e}, \mathbf{h}, \mathbf{i}$ furnished the ribosides $\mathbf{1 8 d}, \mathbf{e}, \mathbf{h}, \mathbf{i}$.

The glucopyranosyl isothiocyanate 19 was first prepared by Fischer from tetra- O-acetyl- α-D-glucopyranosyl bromide and silver thiocyanate. ${ }^{28}$ All later methods recommended for the preparation of compound 19 are variants of Fischer's procedure. ${ }^{29-33}$ We have found that penta-O-acetyl-dglucopyranose reacts with trimethylsilyl isothiocyanate in the presence of tin tetrachloride to furnish the pure β-form 19 in reproducible yields of $75-85 \%$.

Scheme 4 Reagents and conditions: i, $\mathrm{SbCl}_{5}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60$ to $23^{\circ} \mathrm{C}, 7 \mathrm{~h}$, aq. $\mathrm{NaHCO} \mathrm{N}_{3}, 23{ }^{\circ} \mathrm{C}(85 \%)$; ii, $\mathrm{NaOMe}, \mathrm{MeOH}, 23{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}(71 \%)$; iii, SbCl , $\mathrm{CH}_{2} \mathrm{Cl}_{2},-60$ to $23^{\circ} \mathrm{C}, 7 \mathrm{~h}$, aq. $\mathrm{NaHCO}_{3}, 23{ }^{\circ} \mathrm{C}(63 \%)$; the figures are ${ }^{13} \mathrm{C}$ NMR shifts

Abstract

While isothiocyanate $\mathbf{1 9}$ did not react with the 1,3-diaza-2azoniaallene ion $5\left(\mathrm{R}^{1}=\mathrm{R}^{2}=2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)$, a crystalline product 20b was isolated (85%) from the reaction mixture of compound 19 and the 1-aza-2-azoniaallene salt $\mathbf{1 b}$ (Scheme 4). Reactions of heterocumulenes $\mathbf{2}$ with isothiocyanates have not yet been described. Cycloaddition could have occurred either across the $\mathrm{C}=\mathrm{S}$ double bond of compound 19 to give the 2,3-dihydro-1,3,4-thiadiazole 20b (cf. structure 24) or across the $\mathrm{C}=\mathrm{N}$ double bond with formation of an isomeric 4,5-dihydro-1H-1,3,4-triazole-5-thione (cf. structure 23). For the exocyclic (C-2) and endocyclic (C-5) $\mathrm{C}=\mathrm{N}$ carbon atoms of the thiadiazole 24 (constitution secured by X-ray structural analysis) ${ }^{13} \mathrm{C}$ chemical shifts of $\delta_{\mathrm{C}} 152.0$ and $149.7\left(\mathrm{CDCl}_{3}\right)$ were observed. ${ }^{34}$ L'abbé et al. reported values in the range 151-164 ppm for C-2 and of 149-155 ppm for C-5 for several thiadiazoles of type $\mathbf{2 4} .^{35,36}$ On the other hand, for triazole-5-thiones of type $23{ }^{13} \mathrm{C}$ chemical shifts close to $\delta_{\mathrm{C}} 168$ and of $\delta_{\mathrm{C}} 145-160$ were reported for $\mathrm{C}=\mathrm{S}(\mathrm{C}-5)$ and $\mathrm{C}=\mathrm{N}(\mathrm{C}-3)$, respectively. ${ }^{37-40}$ According to these data ${ }^{13} \mathrm{C}$ NMR shifts of $\delta_{\mathrm{C}} 158.0$ and 147.5 $\left(\mathrm{CDCl}_{3}\right)$ observed for compound 20b may be assigned to C-2, -5 of the thiadiazole shown in Scheme 4. Deblocking of compound 20b with sodium in methanol afforded the nucleoside 21b (71\%).

The crystalline thiadiazole nucleoside $\mathbf{2 2}$ was obtained (45%) from substrates $\mathbf{1 9}$ and $\mathbf{1 f}$. Again, arguments in favour of a 2,5-dihydro-1,3,4-thiadiazole structure and against an isomeric 4,5-dihydro-3 H -1,2,4-triazole-3-thione rest on the ${ }^{13} \mathrm{C}$ NMR spectra. For the thiadiazole 26 (X-ray structural analysis) ${ }^{34}$ the ${ }^{13} \mathrm{C}$ NMR shifts given in Scheme 4 were observed, while for several triazoles $25 \mathrm{C}=\mathrm{S}$ shifts close to $\delta_{\mathrm{C}} 188$ and shifts of the saturated ring carbon (C-5) of $\delta_{\mathrm{C}} 109-110$ were found. ${ }^{34,41}$ Accordingly, compound 22 is a thiadiazole. In conclusion, cycloadditions of readily accessible 1-aza-2azoniaallene salts $\mathbf{2}$ and 1,3-diaza-2-azoniaallene salts $\mathbf{5}$ provide a new method for the preparation of C - as well as of N nucleosides.

Experimental

Solvents were dried by standard methods. Cycloadditions were carried with exclusion of moisture. IR spectra: Perkin-Elmer FTIR 1600. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra: Bruker AC-250 and WM-250 spectrometers; internal reference $\mathrm{SiMe}_{4} ; \delta$-scale; J-values are given in Hz. Optical rotations: Perkin-Elmer 241 polarimeter; $[a]_{\mathrm{D}}$-values are in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

3,3-Dimethylbutan-2-one 4-fluorophenylhydrazone

A mixture of 4-fluorophenylhydrazine hydrochloride ($1.63 \mathrm{~g}, 10$ mmol), 3,3-dimethylbutan-2-one ($2.02 \mathrm{~g}, 20 \mathrm{mmol}$) and NaOAc $(0.82 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{ml})$ was boiled under reflux for

8 h . The solvent was evaporated off and the residue was extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{ml})$. The combined organic extracts were diluted with $\mathrm{CHCl}_{3}(40 \mathrm{ml})$, filtered with added decolorizing charcoal, and evaporated in vacuo to furnish the title hydrazone as an orange oil (1.91 g , 92%) (Found: C, 69.25; $\mathrm{H}, 7.82$; $\mathrm{N}, 13.35 . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{FN}_{2}$ requires C, 69.20; $\mathrm{H}, 8.23$; N, $13.45 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1607$ and $1709 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.16(9 \mathrm{H})$ and $1.80(3 \mathrm{H})\left(\mathrm{CH}_{3}\right)$ and 6.89-7.03 (m, ArH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.6$ and $27.8(3 \mathrm{C})\left(\mathrm{CH}_{3}\right), 38.5(\mathrm{C}), 113.9$ (d, J 7, o-C), 115.6 (d, J 22, m-C), 142.8 (d, J 2, ipso-C), 156.9 (d, $J 236, p-\mathrm{C})$ and $152.7(\mathrm{C}=\mathrm{N})$.

Ethyl 3-[1-(4-fluorophenyl)ethylidene]carbazate

A mixture of 4-fluoroacetophenone ($13.81 \mathrm{~g}, 100 \mathrm{mmol}$) and ethyl carbazate ($10.41 \mathrm{~g}, 100 \mathrm{mmol}$) in EtOH (80 ml) containing $\mathrm{AcOH}(1 \mathrm{ml})$ was boiled under reflux for 5 h . Crystallization at $-15^{\circ} \mathrm{C}$ and washing with a small amount of cold EtOH afforded the title compound as a crystalline powder (20.40 g , 91%); mp 121-122 ${ }^{\circ} \mathrm{C}$ (Found: C, 59.09; H, 5.86; N, 12.54. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 58.93 ; \mathrm{H}, 5.84 ; \mathrm{N}, 12.49 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1702,1723$ and 1761; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.34(\mathrm{t}, J 7.1)$ and $2.21\left(\right.$ together $\left.\mathrm{CH}_{3}\right), 4.21\left(\mathrm{q}, J 7.1, \mathrm{CH}_{2}\right), 7.01$ $(\mathrm{m}, 2 \mathrm{H})$ and $7.72(\mathrm{~m}, 2 \mathrm{H})(\mathrm{ArH})$ and $8.49(\mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.1$ and $14.6\left(\mathrm{CH}_{3}\right), 62.0\left(\mathrm{CH}_{2}\right), 115.3(\mathrm{~d}, J 22$, m-C), 128.2 (d, $J 8, o-\mathrm{C}), 134.4$ (d, $J 3, i-\mathrm{C}), 163.5$ (d, $J 248, p-$ C), $147.7(\mathrm{C}=\mathrm{N})$ and $154.6(\mathrm{br}, \mathrm{C}=\mathrm{O})$.

Ethyl 3-isopropylidenecarbazate

A solution of ethyl carbazate ($10.41 \mathrm{~g}, 100 \mathrm{mmol}$) in acetone $(40 \mathrm{ml})$ was boiled under reflux for 2 h . Evaporation of excess of acetone afforded the title ester as a powder ($13.99 \mathrm{~g}, 98 \%$); $\mathrm{mp} 68-69^{\circ} \mathrm{C}$ (Found: C, $50.02 ; \mathrm{H}, 8.36 ; \mathrm{N}, 19.93 . \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $49.98 ; \mathrm{H}, 8.39 ; \mathrm{N}, 19.43 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1710$ and $1760 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32(\mathrm{t}, J 7.0), 1.87$ and 2.04 $\left(\mathrm{CH}_{3}\right), 4.27\left(\mathrm{q}, J 7.0, \mathrm{CH}_{2}\right)$ and $7.99(\mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}(62.9 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 4.6, 16.3 and $25.4\left(\mathrm{CH}_{3}\right), 61.8\left(\mathrm{CH}_{2}\right), 151.0$ and 154.4 ($\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{N}$).

(1-Chloro-1,2,2-trimethylpropyl)azo-(4-fluorobenzene) 1c

At $-20^{\circ} \mathrm{C}$, with exclusion of light, tert-butyl hypochlorite ${ }^{42}$ $(1.63 \mathrm{~g}, 15 \mathrm{mmol})$ was added dropwise to a solution of $3,3-$ dimethylbutan-2-one 4-fluorophenylhydrazone $(2.07 \mathrm{~g}, 10$ $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{ml})$. After stirring of the mixture at $0^{\circ} \mathrm{C}$ for 3 h the solvent was evaporated off to afford the title azo compound as a red oil ($2.38 \mathrm{~g}, 98 \%$), which was used without further purification; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1597 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.20(9 \mathrm{H})$ and $1.84\left(\mathrm{CH}_{3}\right), 7.13(\mathrm{~m}, 2 \mathrm{H})$ and $7.80(\mathrm{~m}, 2 \mathrm{H})$ (ArH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.5,26.2(3 \mathrm{C})\left(\mathrm{CH}_{3}\right), 41.1,103.5$ (C), 116.0 (d, $J 23, m$-C), 125.0 (d, $J 9, o-\mathrm{C}), 147.7$ (d, $J 3, i-\mathrm{C})$ and 164.4 (d, J252, p-C).

Ethyl [1-chloro-1-(4-fluorophenyl)ethyl]azocarboxylate 1d

At $-20^{\circ} \mathrm{C}$, with exclusion of light, tert-butyl hypochlorite (1.63 $\mathrm{g}, 15 \mathrm{mmol})$ was added dropwise to a solution of ethyl [1-(4fluorophenyl)ethylidene]carbazate ($2.24 \mathrm{~g}, 10 \mathrm{mmol}$) in CHCl_{3} $(10 \mathrm{ml})$. After stirring of the mixture at $0^{\circ} \mathrm{C}$ for 3 h the solvent was evaporated off to afford compound $\mathbf{1 d}$ as an orange oil ($2.56 \mathrm{~g}, 99 \%$), which was used without further purification; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1610$ and $1771 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.42(\mathrm{t}, J$ 7.1) and $2.23\left(\mathrm{CH}_{3}\right), 4.47\left(\mathrm{q}, J 7.1, \mathrm{CH}_{2}\right), 7.09(\mathrm{~m}, 2 \mathrm{H})$ and 7.52 $(\mathrm{m}, 2 \mathrm{H})(\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.1$ and $29.3\left(\mathrm{CH}_{3}\right)$, $65.1\left(\mathrm{CH}_{2}\right), 94.6(\mathrm{C}), 115.7(\mathrm{~d}, J 12, m-\mathrm{C}), 128.7(\mathrm{~d}, J 8, o-\mathrm{C})$, 135.4 (d, $J 4, i$-C), 162.9 (d, $J 249, p-\mathrm{C})$ and 161.6 (C=O).

Ethyl (1-chloro-1-methylethyl)azocarboxylate 1e

From ethyl 3-isopropylidenecarbazate ($1.44 \mathrm{~g}, 10 \mathrm{mmol}$) as described for analogue 1d. Title compound was obtained as a yellow-orange oil ($1.64 \mathrm{~g}, 92 \%$), which was used without further purification; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1771 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.43$ (t, J 7.1) and $1.91(6 \mathrm{H})\left(\mathrm{CH}_{3}\right), 4.46\left(\mathrm{q}, J 7.1, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.1$ and $29.7(2 \mathrm{C})\left(\mathrm{CH}_{3}\right), 64.9\left(\mathrm{CH}_{2}\right), 93.2(\mathrm{C})$ and $161.6(\mathrm{C}=\mathrm{O})$.

5-Phenyl-4-(2,3,4,6-tetra- O-acetyl- β-d-glucopyranosyl)-1,3-bis-(2,4,6-trichlorophenyl)-1,2,3-triazolium hexachloroantimonate 8 A solution of $\mathrm{SbCl}_{5}(2.99 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added dropwise to a cold $\left(-60^{\circ} \mathrm{C}\right)$ suspension of chloride 4 $\left(\mathrm{R}^{1}=\mathrm{R}^{2}=2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)^{17}(4.38 \mathrm{~g}, 10 \mathrm{mmol})$ and alkyne 7^{19} $(4.32 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$. The colour of the mixture changed from yellow to red. The mixture was stirred at between -60 and $-30^{\circ} \mathrm{C}$ for 2 h , then at $0^{\circ} \mathrm{C}$ for 30 min . On slow addition of $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ some 2,4,6-trichlorobenzenediazonium hexachloroantimonate ($1.14 \mathrm{~g}, 21 \%$) precipitated. Filtration, and evaporation of the filtrate, afforded a brown residue, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{ml})$. Slow addition of $\mathrm{Et}_{2} \mathrm{O}$ $(160 \mathrm{ml})$ to the red solution furnished the salt $\mathbf{8}$ as a precipitate ($8.92 \mathrm{~g}, 76 \%$); mp $188-190^{\circ} \mathrm{C}$ (decomp.) (Found: C, $34.78 ; \mathrm{H}$, 2.50; N, 3.52. $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{Cl}_{12} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Sb}$ requires C, $34.91 ; \mathrm{H}, 2.41 ; \mathrm{N}$, $3.59 \%) ;[a]_{\mathrm{D}}^{25}-61.8\left(c 1.0, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1759$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.76,1.91,1.98$ and $2.10\left(\mathrm{CH}_{3}\right), 4.06(\mathrm{~d}, J$ 12.9, H-6'), 4.40 (m, H-5', -6'), 4.84 (t, J 9.6, H-4'), 5.00-5.31 (m, H-1'-3') and 7.62-7.84 (ArH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 20.4, 20.5, 20.7 and $20.8\left(\mathrm{CH}_{3}\right), 61.2,66.5,70.3,70.7,73.3$ and 77.0 $(\mathrm{CH}), 119.1-145.9$ (15 signals, aryl, =C), 169.2, 169.3, 169.6 and 170.1 ($\mathrm{C}=\mathrm{O}$).

Preparation of acylated glycosyl-1 \boldsymbol{H}-1,2,4-triazolium hexachloroantimonates. General procedure

A solution of $\mathrm{SbCl}_{5}(10-40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4-20 \mathrm{ml})$ was added dropwise to a stirred, cold $\left(-60^{\circ} \mathrm{C}\right)$ solution of the glycosyl cyanide 9 or $\mathbf{1 3}(10 \mathrm{mmol})$ and the required (chloroalkyl)azo compound 1 ($10-40 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10-50 \mathrm{ml})$ After stirring of the mixture at $-60^{\circ} \mathrm{C}$ for 2 h , then between -60 and $0^{\circ} \mathrm{C}$ for 2 h , then at $0^{\circ} \mathrm{C}$ for 2 h , and finally at $23^{\circ} \mathrm{C}$ for 1 h , water $(200 \mathrm{ml})$ and $\mathrm{NaHCO}_{3}(33.61 \mathrm{~g}, 400 \mathrm{mmol})$ were added. Vigorous shaking, filtration, separation of the organic phase, extraction of the aqueous phase with $\mathrm{CHCl}_{3}(3 \times 60 \mathrm{ml})$, drying of the combined organic extracts over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporation of the mixture afforded the product, which was purified by crystallization or by column chromatography (300 g of SiO_{2}; eluent CHCl_{3}.

2,3-Dimethyl-5-(2,3,4,6-tetra-O-acetyl- β-d-galactopyranosyl)-1-(2,4,6-trichlorophenyl)-1H-1,2,4-triazolium hexachloroantimon-

 ate 11aFrom $\mathrm{SbCl}_{5}(2.99 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ nitrile $\mathbf{9}^{21,43}$ ($3.57 \mathrm{~g}, 10 \mathrm{mmol}$) and compound $\mathbf{1 a}^{10,44^{2}}(2.86 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. After the mixture had been stirred the solvent was evaporated off. The yellow residue was dissolved in warm $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. Filtration, addition of $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ to the filtrate, and crystallization at $-15^{\circ} \mathrm{C}$ afforded title compound

11a as a powder ($7.02 \mathrm{~g}, 75 \%$); mp $135-137^{\circ} \mathrm{C}$ (Found: C, 30.55; $\mathrm{H}, 2.81 ; \mathrm{N}, 4.31 . \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Sb}$ requires C, $30.59 ; \mathrm{H}$, $2.89 ; \mathrm{N}, 4.46 \%) ;[a]_{\mathrm{D}}^{22}-45 ;[a]_{578}^{22}-47$ (c 1.1, CHCl_{3}); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1757 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.99,2.05,2.10$, 2.14, 3.00 and $4.01\left(\mathrm{CH}_{3}\right), 3.49(\mathrm{dd}, J 7.5$ and 11.7) and 3.80 (dd, $J 4.6$ and 11.7) ($\left.\mathrm{H}_{2}-6^{\prime}\right), 4.06$ (m, H-5'), 4.95 (d, $\left.J 9.9, \mathrm{H}-1^{\prime}\right)$, 5.17 (dd, $J 3.1$ and 10.1, H-3'), 5.39 (d, $J 2.9$, H-4'), 5.58 (t, J $\left.10.0, \mathrm{H}-2^{\prime}\right)$ and 7.73 (dd, $\left.J 2.1, \mathrm{ArH}\right) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $14.5,20.5,20.6,20.7,20.9$ and $35.3\left(\mathrm{CH}_{3}\right), 61.4,66.3,67.0,70.8$, 72.8 and 75.2 (C-1'-6'), 124.9, 129.8, 130.3, 135.5, 136.3 and 142.2 (aryl), 157.2 and $160.9(\mathrm{C}=\mathrm{N})$ and $169.5,169.6,169.7$ and 170.2 (C=O).

3-Methyl-5-(2,3,4,6-tetra- O-acetyl- β-d-galactopyranosyl)-1-(2,4,6-trichlorophenyl)-1 H -1,2,4-triazole 11b

From $\mathrm{SbCl}_{5}(7.50 \mathrm{~g}, 25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, nitrile 9 $(8.93 \mathrm{~g}, 25 \mathrm{mmol})$ and chloride $\mathbf{1 b}^{12}(8.20 \mathrm{~g}, 25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$. After the mixture had been stirred the solvent was decanted from a dark brown oil, which was dissolved in $\mathrm{CHCl}_{3}(150 \mathrm{ml})$. The solution was shaken with water $(100 \mathrm{ml})$. Separation of the phases, extraction of the aqueous phase with $\mathrm{CHCl}_{3}(2 \times 50 \mathrm{ml})$, drying of the combined organic extracts and evaporation of the solution afforded an oil, which was dissolved in $\mathrm{MeCN}(150 \mathrm{ml})$. The solution was cooled to $-20^{\circ} \mathrm{C}$ and aq. $\mathrm{NaHCO}_{3}(17.80 \mathrm{~g}, 200 \mathrm{mmol}$ in 80 ml$)$ was added. After stirring of the mixture at $-10^{\circ} \mathrm{C}$ for 2 h , then at between -10 and $23^{\circ} \mathrm{C}$ for 3 h , MeCN was removed under reduced pressure and the aqueous solution was extracted with CHCl_{3} $(80 \mathrm{ml})$. Work-up furnished a yellow powder, which was crystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{ml})$-pentane $(20 \mathrm{ml})$ to give title compound 11 b as a powder $(12.33 \mathrm{~g}, 84 \%)$; mp $129-131^{\circ} \mathrm{C}$ (Found: C, $46.69 ; \mathrm{H}, 4.22 ; \mathrm{N}, 7.16 . \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{9}$ requires C, 46.60; H, 4.08; N, 7.09\%); [a] $]_{\mathrm{D}}^{22}-16 ;[a]_{578}^{22}-16\left(c 1.0, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1759 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.99,2.01,2.02$, 2.14 and $2.45\left(\mathrm{CH}_{3}\right), 3.79$ (m, H-5', $\left.\mathrm{H}_{2}-6^{\prime}\right), 4.54$ (d, J9.9, H-1'), 5.07 (dd, $J 3.2$ and 10.1, H-3'), 5.38 (d, $\left.J 3.2, \mathrm{H}-4^{\prime}\right), 5.70(\mathrm{t}, J$ $\left.10.0, \mathrm{H}-2^{\prime}\right)$ and 7.48 (dd, $J 2.2, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 14.0, 20.5, 20.6 and $20.8\left(\mathrm{CH}_{3}\right), 61.6,67.0,67.3,71.7,72.8$ and 74.7 (C-1'-6'), 128.3, 128.4, 133.0, 135.3, 135.5 and 136.7 (aryl), 152.1 and $162.1(\mathrm{C}=\mathrm{N}), 169.1,170.0,170.1$ and $170.2(\mathrm{C}=\mathrm{O})$.

5-(β-d-Galactopyranosyl)-3-methyl-1-(2,4,6-trichlorophenyl)-

 1H-1,2,4-triazole 12bA solution of sodium ($0.46 \mathrm{~g}, 20 \mathrm{mmol}$) and tetraacetate 11b $(5.93 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{ml})$ was stirred at $23^{\circ} \mathrm{C}$ for 3 h. Neutralization with Amberlite $120\left(\mathrm{H}^{+}\right.$form) and evaporation of the solution afforded a yellow foam, which was dissolved in water $(60 \mathrm{ml})$. Extraction with $\mathrm{Et}_{2} \mathrm{O}(2 \times 60 \mathrm{ml})$ and evaporation of the aqueous solution furnished a powder, which was crystallized from $\mathrm{MeOH}(2 \mathrm{ml})$ to give title compound 12b as a pale brown crystalline powder ($3.27 \mathrm{~g}, 77 \%$); mp 218$220{ }^{\circ} \mathrm{C}$ (Found: C, 42.63; H, 3.80; N, 9.93. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $\mathrm{C}, 42.42 ; \mathrm{H}, 3.80 ; \mathrm{N}, 9.90 \%) ;[a]_{\mathrm{D}}^{22}+19 ;[a]_{578}^{22}+21(c 0.9$, $\mathrm{MeOH}) ; v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1528 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right)$ $2.34\left(\mathrm{CH}_{3}\right), 3.20-3.43(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H})$, $4.38(\mathrm{~m}, 2 \times \mathrm{OH}), 4.75(\mathrm{~d}, J 5.5, \mathrm{OH}), 4.84(\mathrm{~d}, J 4.3, \mathrm{OH})$ and $7.93(\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 13.6\left(\mathrm{CH}_{3}\right), 59.7,67.8$, 68.6, 73.4, 74.2 and 79.1 ($\left.\mathrm{C}-1^{\prime}-6^{\prime}\right)$, 128.6, 128.7, 132.0, 134.5, 134.7, 135.7, 155.4 and 160.3 (aryl, C-3, -5).

3-Methyl-5-(2,3,5-tri- O-benzoyl- β-d-ribofuranosyl)-1-(2,4,6-trichlorophenyl)-1 $\mathrm{H}-\mathbf{1 , 2 , 4 - t r i a z o l e ~ 1 5 b ~}$

From $\mathrm{SbCl}_{5}(5.98 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and a mixture of nitrile $\mathbf{1 3}^{21}(4.72 \mathrm{~g}, 10 \mathrm{mmol})$ and chloride $\mathbf{1 b}^{12}(6.56 \mathrm{~g}, 20$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$. Chromatography on silica gel $(240 \mathrm{~g})$, first with CHCl_{3}-light petroleum (distillation range $60-80^{\circ} \mathrm{C}$) (3:2), and then with CHCl_{3} as eluent, afforded title compound 15b as a pale yellow crystalline powder ($3.39 \mathrm{~g}, 48 \%$); mp $65-$ $66^{\circ} \mathrm{C}$ (Found: C, 59.18; H, 3.83; N, 6.14. $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires $\mathrm{C}, 59.46 ; \mathrm{H}, 3.71 ; \mathrm{N}, 5.95 \%) ;[a]_{D}^{23}+9 ;[a]_{588}^{23}+10(c 1.1$,
$\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1742 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.45$ $\left(\mathrm{CH}_{3}\right), 4.44\left(\mathrm{dd}, J 5.2\right.$ and $\left.11.9, \mathrm{H}-5^{\prime}\right), 4.59\left(\mathrm{~m}, \mathrm{H}-4^{\prime},-5^{\prime}\right), 5.21$ (d, $\left.J 4.3, \mathrm{H}-11^{\prime}\right), 5.97$ (t, $\left.J 5.5, \mathrm{H}-3^{\prime}\right), 6.20$ (dd, $J 4.6$ and 5.2, H$\left.2^{\prime}\right)$ and $7.26-8.08(\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.0\left(\mathrm{CH}_{3}\right)$, 64.2, 72.5, 75.1, 75.4, 80.3 ($\mathrm{C}-1^{\prime}-5^{\prime}$), 153.8 and $162.2(\mathrm{C}=\mathrm{N})$, $165.0,165.2$ and $166.1(\mathrm{C}=\mathrm{O})$.

1-(4-Fluoropheny)-3-methyl-5-(2,3,5-tri- O-benzoyl- $\boldsymbol{\beta}$-D-ribofuranosyl)-1 $\mathrm{H}-1,2,4$-triazole $\mathbf{1 5 c}$

From $\mathrm{SbCl}_{5}(4.19 \mathrm{~g}, 14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ and a mixture of nitrile $\mathbf{1 3}(4.72 \mathrm{~g}, 10 \mathrm{mmol})$ and chloride $\mathbf{1 c}(3.40 \mathrm{~g}, 14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. Purification by column chromatography afforded title compound 15 c as a pale brown crystalline powder ($5.22 \mathrm{~g}, 84 \%$); mp 59-61 ${ }^{\circ} \mathrm{C}$ (Found: C, 67.42; H, 4.31; N, 6.97. $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{O}_{7}$ requires C, $\left.67.62 ; \mathrm{H}, 4.54 ; \mathrm{N}, 6.76 \%\right)$; $[a]_{\mathrm{D}}^{23}+7$; $[a]_{578}^{23}+8\left(c 1.1, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1734 ; \delta_{\mathrm{H}}(250 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 2.37\left(\mathrm{CH}_{3}\right), 4.54-4.80\left(\mathrm{~m}, \mathrm{H}^{\prime} 4^{\prime}, \mathrm{H}_{2}-5^{\prime}\right), 5.19(\mathrm{~d}, J 3.1$, $\left.\mathrm{H}-1^{\prime}\right), 6.21\left(\mathrm{t}, J \approx 5.3, \mathrm{H}-3^{\prime}\right), 6.28\left(\mathrm{dd}, J \approx 3.1\right.$ and $\left.5.3, \mathrm{H}-2^{\prime}\right)$ and $7.12-8.09(\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 13.8\left(\mathrm{CH}_{3}\right), 63.7,72.8$, 74.8, 75.4 and 80.2 (C-1'-5'), 116.4 (d, $J 23, m$-aryl), 127.0 (d, $J 9, o$-aryl), 162.6 (d, $J 249, p$-aryl), 151.8 and $160.9(\mathrm{C}=\mathrm{N})$, 165.2, 165.3 and $166.2(\mathrm{C}=\mathrm{O})$.

3-Methyl-5-(β-d-ribofuranosyl)-1-(2,4,6-trichlorophenyl)-1 H -1,2,4-triazole 16b

At $23^{\circ} \mathrm{C}$ a solution of $\mathbf{1 5 b}(5.42 \mathrm{~g}, 10 \mathrm{mmol})$ and sodium $(0.46$ $\mathrm{g}, 20 \mathrm{mmol}$) in MeOH (200 ml) was stirred for 3 h . Neutralization with 0.5 m HCl , evaporation of the solution, dissolution of the residue in water $(80 \mathrm{ml})-\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{ml})$, separation of the phases, extraction of the aqueous phase with $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{ml})$, and evaporation of the aqueous phase afforded an oil, which was purified by column chromatography on silica gel (130 g), first with CHCl_{3}, finally with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$ as eluent. Workup afforded title compound $\mathbf{1 6 b}$ as a pale yellow oil, which slowly solidified to give a pale yellow powder ($3.32 \mathrm{~g}, 84 \%$); mp 144-146 ${ }^{\circ} \mathrm{C}$ (Found: C, 43.34; H, 3.93; N, 10.61. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 42.61 ; \mathrm{H}, 3.58 ; \mathrm{N}, 10.65 \%) ;[a]_{\mathrm{D}}^{23}-20 ;[a]_{578}^{23}-21(c 0.5$, $\mathrm{MeOH}) ; v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1538$ and $1559 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\mathrm{CD}_{3} \mathrm{SOCD}_{3} ; 303 \mathrm{~K}$) $2.34\left(\mathrm{CH}_{3}\right), 3.27\left(\mathrm{~m}, \mathrm{H}_{2}-5^{\prime}\right)$, 3.72 (q , $\left.J \approx 4.9, \mathrm{H}-4^{\prime}\right), 3.88$ (q, $\left.J \approx 5.0, \mathrm{H}-3^{\prime}\right), 4.22\left(\mathrm{q}, J \approx 5.8, \mathrm{H}-2^{\prime}\right)$, 4.45 (d, $J 5.7, \mathrm{H}^{\prime}$ '), 4.62 (t, $\left.J 5.5, \mathrm{OH}-5^{\prime}\right), 4.96$ (d, $J 5.4, \mathrm{OH}-$ $\left.3^{\prime}\right), 5.17\left(\mathrm{~d}, J 6.3, \mathrm{OH}-2^{\prime}\right)$ and $7.96(\mathrm{ArH}) ; \delta_{\mathrm{C}}(62.9 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3} ; 303 \mathrm{~K}\right) 13.5\left(\mathrm{CH}_{3}\right), 61.8,71.4,74.6,75.7$ and 85.1 (C-1'-5'), 128.8, 131.8, 134.1, 134.6 and 136.1 (aryl), 156.3 and $160.7(\mathrm{C}=\mathrm{N})$.

1-(4-Fluorophenyl)-3-methyl-5-(β-d-ribofuranosyl)-1 H-1,2,4triazole hydrate 16c
A solution of tribenzoate $\mathbf{1 5 c}(6.22 \mathrm{~g}, 10 \mathrm{mmol})$ in MeOH (200 $\mathrm{ml})$ and conc. aq. $\mathrm{NH}_{3}(200 \mathrm{ml})$ was kept at $23^{\circ} \mathrm{C}$ for 20 h . The solvent was evaporated off and the oily residue was purified by column chromatography $\left[\mathrm{SiO}_{2}(300 \mathrm{~g}) ; \mathrm{CHCl}_{3}\right.$, then $\mathrm{CHCl}_{3}-$ $\mathrm{MeOH}(95: 5)$ as eluent] to afford a foam, which was dissolved in water $(50 \mathrm{ml})$. Repeated extraction with $\mathrm{Et}_{2} \mathrm{O}$ to remove small amounts of benzamide, and evaporation of water, afforded title compound 16 c as a resin ($1.58 \mathrm{~g}, 51 \%$) (Found: C, 51.57 ; H, 5.59; $\mathrm{N}, 12.70 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, 51.36 ; H, 5.54 ; $\mathrm{N}, 12.84 \%) ;[a]_{\mathrm{D}}^{23}-35 ;[a]_{578}^{23}-38(c 0.96, \mathrm{MeOH}) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1602 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 2.32\left(\mathrm{CH}_{3}\right), 3.43(\mathrm{~m}$, $\mathrm{H}_{2}-5^{\prime}$), $3.82\left(\mathrm{q}, J \approx 4.4, \mathrm{H}-4^{\prime}\right), 4.02\left(\mathrm{q}, J \approx 4.5, \mathrm{H}-3^{\prime}\right), 4.44$ (q, $\left.J \approx 6.1, \mathrm{H}-2^{\prime}\right), 4.55\left(\mathrm{~d}, J 6.1, \mathrm{H}^{\prime} 1^{\prime}\right), 4.80\left(\mathrm{t}, J \approx 5.7, \mathrm{OH}-5^{\prime}\right), 5.02$ (d, J 4.8, OH-3'), 5.17 (d, J 6.3, OH-2') and 7.39-7.64 (ArH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 13.5\left(\mathrm{CH}_{3}\right), 62.0,71.4,74.0,74.4$ and $85.8\left(\mathrm{C}-1^{\prime}-5^{\prime}\right), 116.4(\mathrm{~d}, J 23, m-\mathrm{C}), 126.8(\mathrm{~d}, J 9, o-\mathrm{C})$, $133.0(\mathrm{~d}, J 3, i$-C), 161.8 (d, $J 246, p-\mathrm{C}), 153.8$ and 159.5 ($\mathrm{C}=\mathrm{N}$).

1-(4-Fluorophenyl)-5-methyl-3-(2,3,5-tri- O-benzoyl- β-d-ribofuranosyl)-1 $\mathrm{H}-1,2,4$-triazole $\mathbf{1 7 d}$

From $\mathrm{SbCl}_{5}(8.97 \mathrm{~g}, 30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ and a mixture
of nitrile $\mathbf{1 3}(4.72 \mathrm{~g}, 10 \mathrm{mmol})$ and chloride $\mathbf{1 d}(7.76 \mathrm{~g}, 30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$. After stirring of the mixture the solvent was removed. The dark brown residue was dissolved in MeCN (30 $\mathrm{ml})$. After cooling of the mixture to $0^{\circ} \mathrm{C}$, water (100 ml) and $\mathrm{NaHCO}_{3}(25.20 \mathrm{~g}, 300 \mathrm{mmol})$ were added slowly. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 30 min and filtered. MeCN was removed in vacuo, and the aqueous phase was extracted with CHCl_{3} $(3 \times 60 \mathrm{ml})$. The combined organic extracts were washed with water ($3 \times 30 \mathrm{ml}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The orange-brown residue was purified by flash chromatography (140 g silica gel; CHCl_{3} as eluent) to afford title compound $\mathbf{1 7 d}$ as a foam ($4.76 \mathrm{~g}, 77 \%$) (Found: C, 67.52; H, 4.62; N, 6.72. $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{O}_{7}$ requires C, $67.63 ; \mathrm{H}, 4.54 ; \mathrm{N}, 6.76 \%$); $[a]_{\mathrm{D}}^{23}-32$; $[a]_{578}^{23}-35\left(c 1.0, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1738 ; \delta_{\mathrm{H}}(250 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 2.45\left(\mathrm{CH}_{3}\right), 4.64-4.85\left(\mathrm{~m}, \mathrm{H}-4^{\prime}, \mathrm{H}_{2}-5^{\prime}\right), 5.49(\mathrm{~d}, J 4.2$, $\left.\mathrm{H}-1^{\prime}\right), 6.14\left(\mathrm{~m}, \mathrm{H}-2^{\prime},-3^{\prime}\right)$ and $7.13-8.16(\mathrm{ArH}) ; \delta_{\mathrm{C}}(62.9 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 13.1\left(\mathrm{CH}_{3}\right), 64.4,72.9,75.3,77.7$ and $79.9\left(\mathrm{C}^{\prime}{ }^{\prime}-5^{\prime}\right)$, 116.4 (d, $J 23.6, m$-aryl), 153.5 and $160.3(\mathrm{C}=\mathrm{N}), 162.4(\mathrm{~d}, J 250$, p-aryl), 165.2, 165.3 and $166.3(\mathrm{C}=\mathrm{O})$.

1,5-Dimethyl-3-(2,3,5-tri- O-benzoyl- β-d-ribofuranosyl)-1 H -1,2,4-triazole 17e

(a) From $\mathrm{SbCl}_{5}(5.98 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and nitrile $13(4.72 \mathrm{~g}, 10 \mathrm{mmol})$ and chloride $1 \mathrm{e}(3.57 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. The resulting brown oil solidified after addition of $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{ml})$ to afford a brown powder ($3.30 \mathrm{~g}, 61 \%$). Crystallization at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeOH}(14 \mathrm{ml})$ furnished, after workup of the mother liquor, the title compound 17 e as a pale yellow powder $(3.08 \mathrm{~g}, 57 \%)$; mp $131-133^{\circ} \mathrm{C}$ (Found: C, $66.61 ; \mathrm{H}$, 5.19; N, 7.65. $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires $\mathrm{C}, 66.53 ; \mathrm{H}, 5.03 ; \mathrm{N}, 7.76 \%$); $[a]_{\mathrm{D}}^{23}-28 ;[a]_{578}^{23}-29\left(c 0.9, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1739 ; \delta_{\mathrm{H}}(250$ MHz; CDCl_{3}) 2.39 and $3.73\left(\mathrm{CH}_{3}\right), 4.60-4.81(3 \mathrm{H}), 5.38(\mathrm{~d}, J$ $\left.1.4, \mathrm{H}^{\prime} 1^{\prime}\right), 6.05(\mathrm{~m}, 2 \mathrm{H})$ and $7.27-8.58(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.9,35.2\left(\mathrm{CH}_{3}\right), 64.4,72.9,75.3,77.8,79.8$ (C1'-5'), 153.3, $159.3(\mathrm{C}=\mathrm{N}), 165.3,165.4$ and $166.3(\mathrm{C}=\mathrm{O})$.
(b) From $\mathrm{SbCl}_{5}(3.74 \mathrm{~g}, 12.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and a mixture of nitrile $\mathbf{1 3}(4.72 \mathrm{~g}, 10 \mathrm{mmol})$ and chloride $\mathbf{1 f}^{45,46}$ (2.29 $\mathrm{g}, 12.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. The product was precipitated from the reaction mixture by addition of pentane (300 ml). The precipitate was dissolved in $\mathrm{MeCN}(70 \mathrm{ml})$. After cooling of the mixture to $0^{\circ} \mathrm{C}$, water (200 ml) and $\mathrm{NaHCO}_{3}(10.50 \mathrm{~g}, 125$ mmol) were added. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 2 h . The organic phase was separated and the aqueous phase was extracted with $\mathrm{MeCN}(3 \times 100 \mathrm{ml})$. The combined organic phases were evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$. Filtration with added decolorizing charcoal and evaporation of the solution afforded a red foam (3.03 g , 56%), which was crystallized from $\mathrm{MeOH}(10 \mathrm{ml})$ to give the title compound $\mathbf{1 7 e}$ as a pale yellow crystalline powder $(2.93 \mathrm{~g}$, 54%); mp 130-132 ${ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{23}-27 ;[a]_{578}^{23}-30\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

1-Isopropyl-5-methyl-3-(2,3,5-tri-O-benzoyl- β-d-ribofuranosyl)-1H-1,2,4-triazole 17g
From $\mathrm{SbCl}_{5}(3.74 \mathrm{~g}, 12.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and a mixture of nitrile $\mathbf{1 3}(4.72 \mathrm{~g}, 10 \mathrm{mmol})$ and chloride $\mathbf{1 g}^{47,48}(2.99 \mathrm{~g}$, 12.5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$. After completion of the reaction the solvent was evaporated off and the red residue was dissolved in $\mathrm{MeCN}(40 \mathrm{ml})$. Cooling to $0^{\circ} \mathrm{C}$, addition of water $(200 \mathrm{ml})$ and $\mathrm{NaHCO}_{3}(10.50 \mathrm{~g}, 125 \mathrm{mmol})$, stirring at $23^{\circ} \mathrm{C}$ for 6 h , concentration of the solution to a volume of $\sim 100 \mathrm{ml}$, extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{ml})$, and work-up of the combined organic phases afforded a yellow foam, which was purified by flash chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to furnish a foam ($2.85 \mathrm{~g}, 50 \%$). Crystallization at $-15^{\circ} \mathrm{C}$ from EtOH (10 ml) afforded title compound $\mathbf{1 7 g}$ as prisms ($2.11 \mathrm{~g}, 37 \%$); mp 97$99^{\circ} \mathrm{C}$ (Found: C, 67.39; H, 5.62; N, 7.08. $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires $\mathrm{C}, 67.48 ; \mathrm{H}, 5.49 ; \mathrm{N}, 7.38 \%) ;[a]_{\mathrm{D}}^{23}-30 ;[a]_{578}^{23}-32\left(c 0.9, \mathrm{CHCl}_{3}\right)$; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1731 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.45(\mathrm{~d}, J 6.6,6 \mathrm{H})$, $2.43\left(\mathrm{CH}_{3}\right), 4.41$ (sept, $\left.J 6.6, \mathrm{CH}\right), 4.73\left(\mathrm{~m}, \mathrm{H}-4^{\prime}, \mathrm{H}_{2}-5^{\prime}\right), 5.43(\mathrm{~d}$, $\left.J \approx 4,3, \mathrm{H}-1^{\prime}\right), 6.07\left(\mathrm{~m}, \mathrm{H}-2^{\prime},-3^{\prime}\right)$ and $7.27-8.15(\mathrm{Ph}) ; \delta_{\mathrm{C}}(62.9$

MHz; $\left.\mathrm{CDCl}_{3}\right)$ 11.9, 22.18 and $22.22\left(\mathrm{CH}_{3}\right), 50.3(\mathrm{CH}), 64.6$, 73.0, 75.3, 77.7 and $79.8\left(\mathrm{C}-1^{\prime}-5^{\prime}\right), 151.7$ and $158.8(\mathrm{C}=\mathrm{N})$, 165.3, 165.4 and $166.3(\mathrm{C}=\mathrm{O})$.

5,6,7,8-Tetrahydro-2-(2,3,5-tri- O-benzoyl- β-d-ribofuranosyl)-1,2,4-triazolo[1,5-a]pyridine $\mathbf{1 7 h}$

From $\mathrm{SbCl}_{5}(11.96 \mathrm{~g}, 40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ and a mixture of nitrile $\mathbf{1 3}(4.72 \mathrm{~g}, 10 \mathrm{mmol})$ and chloride $\mathbf{1 h}^{12}(8.19 \mathrm{~g}, 40$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. After stirring of the mixture the solvent was removed. The dark brown residue was dissolved in $\mathrm{MeCN}(50 \mathrm{ml})$. After cooling of the mixture to $0^{\circ} \mathrm{C}$, water (60 $\mathrm{ml})$ and $\mathrm{NaHCO}_{3}(26.89 \mathrm{~g}, 320 \mathrm{mmol})$ were added. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 30 min and filtered. MeCN was removed in vacuo, and the aqueous phase was extracted with CHCl_{3} $(3 \times 60 \mathrm{ml})$. The combined organic extracts were washed with water ($3 \times 30 \mathrm{ml}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The dark brown residue was purified by flash chromatography (100 g silica gel; CHCl_{3} as eluent) to afford a foam ($3.58 \mathrm{~g}, 63 \%$), which slowly crystallized from MeOH to give title compound $\mathbf{1 7 h}$ as a crystalline powder, $\mathrm{mp} 126-127^{\circ} \mathrm{C}$ (Found: C, 67.80 ; $\mathrm{H}, 5.23 ; \mathrm{N}, 7.42 . \mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires C, 67.72; H, 5.15; N, $7.40 \%) ;[a]_{\mathrm{D}}^{23}-34 ;[a]_{578}^{23}-36\left(c 0.9, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ $1732 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.98(\mathrm{~m}, 4 \mathrm{H}), 2.87(\mathrm{t}, J 6.1), 4.08(\mathrm{t}$, $J 6.0$) (each CH_{2}), $4.73\left(\mathrm{~m}, \mathrm{H}-4^{\prime}, \mathrm{H}_{2}-5^{\prime}\right), 5.43\left(\mathrm{~m}, J \approx 3.8, \mathrm{H}-1^{\prime}\right)$, $6.06\left(\mathrm{~m}, \mathrm{H}-2^{\prime},-3^{\prime}\right)$ and $7.27-8.16(\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9, \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 20.4, 22.8, 23.7 and $47.0\left(\mathrm{CH}_{2}\right), 64.5,72.9,75.4,78.0$ and 79.7 (C-1'-5'), 153.6 and $159.9(\mathrm{C}=\mathrm{N}), 165.2,165.3$ and 166.3 ($\mathrm{C}=0$).

6,7,8,9-Tetrahydro-2-(2,3,5-tri- O-benzoyl- β-d-ribofuranosyl)-

 5H-1,2,4-triazolo[1,5-a] azepine 17iFrom $\mathrm{SbCl}_{5}(11.96 \mathrm{~g}, 40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ and a mixture of nitrile $\mathbf{1 3}(4.72 \mathrm{~g}, 10 \mathrm{mmol})$ and chloride $\mathbf{1 i}^{12}(8.75 \mathrm{~g}, 40$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. Column chromatography afforded a yellow oil, which was crystallized from $\mathrm{MeOH}(10 \mathrm{ml})$ to afford the title compound 17i as a crystalline powder ($2.50 \mathrm{~g}, 43 \%$); mp ${ }^{127-128 ~}{ }^{\circ} \mathrm{C}$ (Found: C, 68.17; H, 5.35; N, 7.26. $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires $\mathrm{C}, 68.14 ; \mathrm{H}, 5.37 ; \mathrm{N}, 7.23 \%) ;[a]_{\mathrm{D}}^{23}-32 ;[a]_{578}^{23}-34(c 1.0$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1726 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.79(\mathrm{~m}$, $6 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H})$ and $4.17(\mathrm{~m}, 2 \mathrm{H})\left(5 \times \mathrm{CH}_{2}\right), 4.75\left(\mathrm{~m}, \mathrm{H}-4^{\prime}\right.$, $\mathrm{H}_{2}-5^{\prime}$), $5.40\left(\mathrm{br}, \mathrm{H}-1^{\prime}\right), 6.05\left(\mathrm{~m}, \mathrm{H}-2^{\prime},-3^{\prime}\right)$ and $7.28-8.14(\mathrm{Ph})$; $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 24.8,27.3,27.5,30.3$ and $51.3\left(\mathrm{CH}_{2}\right)$, 64.4, 72.8, 75.4, 77.9 and 79.7 ($\left.\mathrm{C}-1^{\prime}-5^{\prime}\right), 158.2$ and $158.3(\mathrm{C}=\mathrm{N})$, 165.2, 165.3 and $166.3(\mathrm{C}=\mathrm{O})$.

1-(4-Fluorophenyl)-5-methyl-3-($\mathbf{3 - D - r i b o f u r a n o s y l) - 1 ~ H - 1 , 2 , 4 - ~}$ triazole 18d

From tribenzoate $\mathbf{1 7 d}(6.22 \mathrm{~g}, 10 \mathrm{mmol})$ as described for analogue 16b. After neutralization and evaporation of the solution the dark brown residue was extracted with $\mathrm{MeOH}(150 \mathrm{ml})$. Filtration and evaporation of the solution furnished a brown foam, which was suspended in water (150 ml). Extraction with $\mathrm{Et}_{2} \mathrm{O}(2 \times 70 \mathrm{ml})$, then with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CHCl}_{3}(5: 1)(70 \mathrm{ml})$, filtration of the aqueous solution with added decolorizing charcoal, and evaporation of the solution afforded title compound $\mathbf{1 8 d}$ as a crystalline powder ($2.23 \mathrm{~g}, 72 \%$); mp $83-86^{\circ} \mathrm{C}$ (Found: C, 54.21; H, 5.27; N, 13.67. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{4}$ requires C, $54.37 ; \mathrm{H}$, $5.21 ; \mathrm{N}, 13.59 \%$); $[a]_{\mathrm{D}}^{23}-26 ;[a]_{588}^{23}-27$ (c $\left.1.0, \mathrm{MeOH}\right)$; $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1608 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 2.44\left(\mathrm{CH}_{3}\right)$, 3.53 (m, H ${ }_{2}-5^{\prime}$), 3.85 (q, $\left.J 4.9, \mathrm{H}^{\prime} 4^{\prime}\right), 4.04$ (q, $\left.J 5.2, \mathrm{H}-3^{\prime}\right), 4.26$ (q, $\left.J 5.5, \mathrm{H}-2^{\prime}\right), 4.68$ (d, $\left.J 5.2, \mathrm{H}-1^{\prime}\right), 4.76\left(\mathrm{t}, J \approx 6.1, \mathrm{OH}-5^{\prime}\right)$, 4.95 (d, $\left.J 5.5, \mathrm{OH}-3^{\prime}\right), 5.09\left(\mathrm{~d}, J 6.1, \mathrm{OH}-2^{\prime}\right)$ and $7.38-7.67$ $(\mathrm{ArH}) ; \delta_{\mathrm{c}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 12.6\left(\mathrm{CH}_{3}\right), 62.2,71.4,74.6$, 77.9 and 84.8 (C-1'-5'), 116.3 (d, $J 23, m-\mathrm{C}), 126.8$ (d, $J 9, o-\mathrm{C})$, $133.4(\mathrm{~d}, J 3, i$-C), 161.5 (d, $J 246, p-\mathrm{C}), 152.9$ and 161.6 ($\mathrm{C}=\mathrm{N}$).

1,5-Dimethyl-3-($\boldsymbol{\beta}$-d-ribofuranosyl)-1 H -1,2,4-triazole 18e

From tribenzoate $17 \mathrm{e}(5.42 \mathrm{~g}, 10 \mathrm{mmol})$ as described for analogue 16b. Purification of the oily product by column chroma-
tography $\left[80 \mathrm{~g} \mathrm{SiO}_{2}\right.$; eluent $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ (5:95) followed by $\mathrm{MeOH}-\mathrm{CHCl}_{3}(10: 90)$] afforded title compound $\mathbf{1 8 e}$ as a pow$\operatorname{der}(1.40 \mathrm{~g}, 61 \%)$; mp 126-128 ${ }^{\circ} \mathrm{C}$ (Found: C, $47.10 ; \mathrm{H}, 6.66$; N, 18.30. $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 47.15; H, $6.60 ; \mathrm{N}, 18.33 \%$); $[a]_{\mathrm{D}}^{23}$ $-31 ;[a]_{578}^{23}-32(c 1.0$ in MeOH$) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1516 ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 2.35$ and $3.72\left(\mathrm{CH}_{3}\right), 3.49\left(\mathrm{~m}, \mathrm{H}_{2}-5^{\prime}\right), 3.80$ ($\left.\mathrm{q}, J \approx 4.9, \mathrm{H}-4^{\prime}\right), 3.99\left(\mathrm{q}, J \approx 5.2, \mathrm{H}-3^{\prime}\right), 4.15$ ($\left.\mathrm{q}, J \approx 5.5, \mathrm{H}-2^{\prime}\right)$, 4.56 (d, J 5.3, H-1'), 4.74 (dd, $J 4.9$ and 6.5, OH-5'), 4.83 (d, $\left.J 5.5, \mathrm{OH}-3^{\prime}\right)$ and 4.93 (d, $\left.J 6.0, \mathrm{OH}-2^{\prime}\right) ; \delta_{\mathrm{C}}(62.9 \mathrm{MHz} ;$ $\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 11.2$ and $34.7\left(\mathrm{CH}_{3}\right), 62.2,71.3,74.6,78.0$ and $84.6\left(\mathrm{C}-1^{\prime}-5^{\prime}\right), 152.6$ and $160.4(\mathrm{C}=\mathrm{N})$.

5,6,7,8-Tetrahydro-2-(β-d-ribofuranosyl)-1,2,4-triazolo[1,5-a]pyridine 18h
From tribenzoate $\mathbf{1 7 h}(5.68 \mathrm{~g}, 10 \mathrm{mmol})$ as described for analogue 18d. Title compound $\mathbf{1 8 h}$ was obtained as a brownish crystalline powder ($1.74 \mathrm{~g}, 68 \%$); mp $92-94{ }^{\circ} \mathrm{C}$ (Found: C, 51.57 ; $\mathrm{H}, 6.80 ; \mathrm{N}, 16.46 . \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 51.76 ; \mathrm{H}, 6.71 ; \mathrm{N}$, $16.46 \%) ;[a]_{\mathrm{D}}^{23}-29 ;[a]_{578}^{23}-30(c 1.0, \mathrm{MeOH}) ; v_{\max }($ Nujol $) / \mathrm{cm}^{-1}$ $1533 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 1.91(\mathrm{~m}, 4 \mathrm{H}), 2.77(\mathrm{t}, J \approx 5.9$, 2 H), 3.46 ($\mathrm{m}, \mathrm{H}_{2}-5^{\prime}$), $3.81\left(\mathrm{q}, J \approx 4.6, \mathrm{H}^{\prime}\right.$), $4.04\left(\mathrm{~m}, \mathrm{CH}_{2}, \mathrm{H}-\right.$ 3^{\prime}), 4.17 (q, $\left.J \approx 5.4, \mathrm{H}^{\prime} 2^{\prime}\right), 4.59$ (d, $\left.J 5.4, \mathrm{H}-1^{\prime}\right), 4.82$ (t, $J \approx 5.2$, $\left.\mathrm{OH}-5^{\prime}\right), 4.93$ (d, $\left.J 5.3, \mathrm{OH}-3^{\prime}\right)$ and 5.04 (d, $\left.J 5.9, \mathrm{OH}-2^{\prime}\right) ; \delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right)$ 19.7, 22.2, 22.9 and $46.3\left(\mathrm{CH}_{2}\right), 62.2,71.3$, 74.7, 78.1 and $8.47\left(\mathrm{C}-1^{\prime}-5^{\prime}\right), 152.6$ and $161.0(\mathrm{C}=\mathrm{N})$.

6,7,8,9-Tetrahydro-2-(β-d-ribofuranosyl)-5H-1,2,4-triazolo-[1,5-a] azepine 18i

From tribenzoate $\mathbf{1 7 i}(5.82 \mathrm{~g}, 10 \mathrm{mmol})$ as described for analogue 16b. Column chromatographic purification [$250 \mathrm{~g} \mathrm{SiO}_{2}$; eluent CHCl_{3}, followed by $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (95:5) and $\mathrm{CHCl}_{3}-$ $\mathrm{MeOH}(90: 10)$] afforded title compound $\mathbf{1 8 i}$ as a pale brown crystalline powder ($1.99 \mathrm{~g}, 74 \%$); mp 123-124 ${ }^{\circ} \mathrm{C}$ (Found: C, 53.22; $\mathrm{H}, 7.11 ; \mathrm{N}, 15.61 . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 53.52; $\mathrm{H}, 7.11$; $\mathrm{N}, 15.61 \%) ;[a]_{\mathrm{D}}^{23}-30 ;[a]_{578}^{23}-31(c 1.2, \mathrm{MeOH}) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ $1523 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3} ; 303 \mathrm{~K}\right) 1.60,1.70,1.81,2.86$ and $4.19\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 3.48\left(\mathrm{~m}, \mathrm{H}_{2}-5^{\prime}\right), 3.79\left(\mathrm{q}, J 4.6, \mathrm{H}-4^{\prime}\right), 3.97(\mathrm{q}$, $\left.J 5.2, \mathrm{H}-3^{\prime}\right), 4.17$ (q, $\left.J \approx 5.5, \mathrm{H}-2^{\prime}\right), 4.54$ (d, $\left.J 5.5, \mathrm{H}-1^{\prime}\right), 4.75$ (dd, $J 5.2$ and 6.1, OH-5'), 4.84 (d, $J 5.2, \mathrm{OH}-3^{\prime}$) and 4.94 (d, J 6.1, $\mathrm{OH}-2^{\prime}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3} ; 303 \mathrm{~K}\right) 24.5,26.4,27.0$, 29.3 and $50.2\left(\mathrm{CH}_{2}\right), 62.2,71.2,74.5,78.0$ and $84.7\left(\mathrm{C}-1^{\prime}-5\right)$, 157.3 and $159.4(\mathrm{C}=\mathrm{N})$.

2,3,4,6-Tetra-O-acetyl- $\boldsymbol{\beta}$-d-glucopyranosyl isothiocyanate 19

A solution of $1,2,3,4,6$-penta- O-acetyl- α-D-glucopyranose ($3.90 \mathrm{~g}, 10 \mathrm{mmol}$), trimethylsilyl isothiocyanate ${ }^{49}(1.31 \mathrm{~g}, 10$ $\mathrm{mmol})$, and distilled $\mathrm{SnCl}_{4}(2.61 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ was boiled under reflux for 12 h . After addition of further trimethylsilyl isothiocyanate ($0.66 \mathrm{~g}, 5 \mathrm{mmol}$) and $\mathrm{SnCl}_{4}(2.61 \mathrm{~g}$, 10 mmol) the mixture was boiled for another 12 h . After neutralization by shaking with water (50 ml) and excess of NaHCO_{3}, filtration and separation of the organic phase, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{ml})$. Drying of the combined organic phases over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtration with added decolorizing coal, and evaporation of the solution afforded a greenish crystalline powder, which was recrystallized at $5{ }^{\circ} \mathrm{C}$ from $\mathrm{Et}_{2} \mathrm{O}(24 \mathrm{ml})$ to furnish the title isothiocyanate 19 as a crystalline powder $(3.51 \mathrm{~g}, 81 \%) ; \mathrm{mp} 113-114^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}^{293}+5.1$ (c $1.0, \mathrm{CHCl}_{3}$) $\left\{\right.$ lit., ${ }^{50} \mathrm{mp} 112-113^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{293}+4.4$ (in $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1752(\mathrm{C}=\mathrm{O})$ and $2020(\mathrm{NCS}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.02,2.03$ and $2.11(6 \mathrm{H})\left(\mathrm{CH}_{3}\right), 3.76(\mathrm{~m}, \mathrm{H}-5), 4.19$ $\left(\mathrm{m}, J_{6,6^{\prime}} 12.5, J_{6,5} 2.4, J_{5,6^{\prime}} 4.7, \mathrm{H}_{2}-6^{\prime}\right)$ and $5.01-5.25(\mathrm{~m}, \mathrm{H}-1-4)$; $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.5$ and $20.7\left(\mathrm{CH}_{3}\right), 61.6,67.7,71.9$, 72.5, 74.1 and 83.5 (C-1-6), 144.3 (NCS), 169.0, 169.2, 170.1 and $170.5(\mathrm{C}=\mathrm{O})$.

2,3-Dihydro-5-methyl-2-(2,3,4,6-tetra- O-acetyl- β-d-gluco-

 pyranosylimino)-3-(2,4,6-trichlorophenyl)-1,3,4-triadiazole 20b From $\mathrm{SbCl}_{5}(8.97 \mathrm{~g}, 30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{3}(30 \mathrm{ml})$ and a mixture of compound $19(3.89 \mathrm{~g}, 10 \mathrm{mmol})$ and chloride $\mathbf{1 b}(12.78 \mathrm{~g}, 30$$\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ in the manner described for compound $\mathbf{1 7 d}$. Flash chromatography afforded a foam, which crystallized from hot $\mathrm{CCl}_{4}(30 \mathrm{ml})$ to afford pale yellow prisms (5.31 g, 85%); mp 126-128 ${ }^{\circ} \mathrm{C}$ (Found: C, 44.16; H, 3.91; N, 6.69 $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}$ requires C, $\left.44.21 ; \mathrm{H}, 3.87 ; \mathrm{N}, 6.72 \%\right) ;[a]_{\mathrm{D}}^{23}+14$; $[a]_{578}^{33}+15\left(c 0.9, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1761$ and $1635 ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.88,1.98,2.02,2.08$ and $2.43\left(\mathrm{CH}_{3}\right), 3.79(\mathrm{~m}, \mathrm{H}-$ 5^{\prime}), 4.16 (dd, $J 2.4$ and 12.3), 4.27 (dd, $J 4.9$ and 12.2) (together $\left.\mathrm{H}_{2}-6^{\prime}\right), 4.49\left(\mathrm{~d}, J 8.8, \mathrm{H}^{\prime} 1^{\prime}\right), 4.97$ (t, J 9.2, H-2'), 5.10 (t, J 9.5, $\left.\mathrm{H}-4^{\prime}\right), 5.23$ (t, J 9.4, H-3') and 7.43 (dd, J 2.2, ArH); $\delta_{\text {(}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 17.4$ and $20.6(2 \mathrm{C}), 20.7$ and $20.8\left(\mathrm{CH}_{3}\right), 62.2$, 68.6, 72.5, 73.4, 73.6 and 91.2 (C-1'-6'), 128.5, 128.9, 133.1, 135.9, 136.0 and 136.5 (aryl), 147.5 and $158.0(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{S})$, $168.9,169.3,170.3$ and $170.6(\mathrm{C}=\mathrm{O})$.

2-(β-d-Glucopyranosylimino)-2,3-dihydro-5-methyl-3-(2,4,6-trichlorophenyl)-1,3,4-thiadiazole 21b

From tetraacetate $\mathbf{2 0 b}(6.25 \mathrm{~g}, 10 \mathrm{mmol})$ as described for analogue 16b. The oily product was purified by flash chromatography [$560 \mathrm{~g} \mathrm{SiO}_{2}$; eluent $\mathrm{CHCl}_{3}-\mathrm{MeOH}(19: 1)$]. Work-up afforded title compound $\mathbf{2 1 b}$ as a crystalline powder (3.24 g , 71%); mp $91-94{ }^{\circ} \mathrm{C}$ (Found: C, 39.21; H, 3.67; N, 9.11 $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires C, $39.45 ; \mathrm{H}, 3.53 ; \mathrm{N}, 9.20 \%$); $[a]_{\mathrm{D}}^{23}+19$; $[a]_{578}^{23}+20(c 1.0, \mathrm{MeOH}) ; v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1620 ; \delta_{\mathrm{H}}(250 \mathrm{MHz} ;$ $\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3} ; 303 \mathrm{~K}\right) 2.39\left(\mathrm{CH}_{3}\right), 2.93-3.72\left(\mathrm{~m}, \mathrm{H}-2^{\prime}-6^{\prime}\right), 3.96$ (d, J 8.2, H-1'), 4.44 (t, J 5.6, OH-6'), 4.68 (d, J 5.2, OH-2'), $4.86\left(\mathrm{~m}, \mathrm{OH}-3^{\prime},-4^{\prime}\right)$ and $7.86(\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3}-\right.$ $\left.\mathrm{SOCD}_{3} ; 303 \mathrm{~K}\right) 16.9\left(\mathrm{CH}_{3}\right), 60.9,69.9,75.1,77.4,78.5$ and 94.3 (C-1'-6'), 128.7, 128.8, 133.4, 135.0, 135.5 and 135.6 (aryl), 147.5 and $156.0(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{S})$.

2,5-Dihydro-2,2-dimethyl-5-(2,3,4,6-tetra-O-acetyl- β-d-gluco-pyranosylimino)-1,3,4-thiadiazole 22

From $\mathrm{SbCl}_{5}(8.97 \mathrm{~g}, 30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ and a mixture of compound 19 ($3.89 \mathrm{~g}, 10 \mathrm{mmol}$) and chloride $\mathbf{1 f}(5.49 \mathrm{~g}, 30$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ as described for analogue $\mathbf{1 7 d}$. After removal of MeCN the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{ml})$. Drying of the combined organic phases, filtration with added decolorizing charcoal, and evaporation of the solution afforded an orange oil, which was crystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})-\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ to give a pale orange powder ($2.88 \mathrm{~g}, 63 \%$). Recrystallization at $-15^{\circ} \mathrm{C}$ from CCl_{4} (200 ml) furnished title compound $\mathbf{2 2}$ as a crystalline powder ($2.08 \mathrm{~g}, 45 \%$); mp $73-75^{\circ} \mathrm{C}$ (Found: C, 46.75 ; H, 5.52; N, 8.88 $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}$ requires C, $47.05 ; \mathrm{H}, 5.48$; $\left.\mathrm{N}, 9.15 \%\right)$; $[a]_{\mathrm{D}}^{23}-19$; $[a]_{578}^{23}-19\left(c 1.0, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1757$ and 1646 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.83,1.84,2.00,2.02,2.06$ and 2.10 $\left(\mathrm{CH}_{3}\right), 3.88\left(\mathrm{~m}, \mathrm{H}-5^{\prime}\right), 4.22(\mathrm{dd}, J 2.6$ and 12.4), $4.27(\mathrm{dd}, J 4.8$ and 12.4) $\left(\mathrm{H}_{2}-6^{\prime}\right), 4.90\left(\mathrm{~d}, J 8.6, \mathrm{H}-1^{\prime}\right), 5.19(\mathrm{t}, J \approx 9.2), 5.26(\mathrm{t}$, $J \approx 8.7$) and $5.36(\mathrm{t}, J \approx 9.4)\left(\mathrm{H}-2^{\prime},-3^{\prime},-4^{\prime}\right) ; \delta_{\mathrm{C}}(62.9 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 20.6,20.7,20.8,27.9$ and $28.1\left(\mathrm{CH}_{3}\right), 62.0,68.3,71.7$, $73.4,74.0$ and $89.7\left(\mathrm{C}-1^{\prime}-6^{\prime}\right), 107.5(\mathrm{NCN}), 169.1,169.4,170.3$, $170.6(\mathrm{C}=\mathrm{O})$ and $177.2(\mathrm{C}=\mathrm{N})$.

Acknowledgements

This work was supported by the Fonds der Chemischen Industrie and by the Deutsche Forschungsgemeinschaft. We thank Mr S. Herzberger for technical assistance.

References

1 The Chemistry of Nucleosides and Nucleotides, ed. L. B. Townsend, Plenum Press, New York, 1988, 1991 and 1994, vols. 1-3.
2 E. S. H. El Ashry and Y. El Kilany, Adv. Heterocycl. Chem., 1997, 68, 1 , and references therein.
3 F. F. Davis and F. W. Allen, J. Biol. Chem., 1957, 227, 907.
4 J.-M. Beau and T. Gallagher, Top. Curr. Chem., 1997, 187, 1.
5 F. Nicotra, Top. Curr. Chem., 1997, 187, 55.

6 M. A. E. Shaban and A. Z. Nasr, Adv. Heterocycl. Chem., 1997, 68, 223.

7 M. H. D. Postema, Tetrahedron, 1992, 48, 8545.
8 L. J. S. Knutsen, Nucleosides, Nucleotides, 1992, 11, 961.
9 St. Hanessian and A. G. Pernet, Adv. Carbohydr. Chem. Biochem., 1976, 33, 111.
10 Q. Wang, J. C. Jochims, St. Köhlbrandt, L. Dahlenburg, M. AlTalib, A. Hamed and A. E. Ismail, Synthesis, 1992, 710.
11 Q. Wang, A. Amer, C. Troll, H. Fischer and J. C. Jochims, Chem. Ber., 1993, 126, 2519.
12 Q. Wang, A. Amer, S. Mohr, E. Ertel and J. C. Jochims, Tetrahedron, 1993, 49, 9973.
13 Q. Wang, M. Al-Talib and J. C. Jochims, Chem. Ber., 1994, 127, 541.

14 Q. Wang, S. Mohr and J. C. Jochims, Chem. Ber, 1994, 127, 947
165 Y. Guo, Q. Wang and J. C. Jochims, Synthesis, 1996, 274.
16 Y. A. Al-Soud, W. Wirschun, N. A. Hassan, G.-M. Maier and J. C. Jochims, Synthesis, in the press.

17 W. Wirschun and J. C. Jochims, Synthesis, 1997, 233.
18 W. Wirschun, G.-M. Maier and J. C. Jochims, Tetrahedron, 1997, 53, 5755.

19 R. Zelinski and R. E. Meyer, J. Org. Chem., 1958, 23, 810.
20 M. T. Garcia-Lopez, G. Garcia-Munoz and R. Madronero, J. Heterocycl. Chem., 1971, 8, 525.

21 F. G. de las Heras and P. Fernandez-Resa, J. Chem. Soc., Perkin Trans. 1, 1982, 903.
22 G. Just and M. Ramjeesingh, Tetrahedron Lett., 1975, 985.
23 T. Huynh-Dinh, J. Igolen, E. Bisagni, J. P. Marquet and A. Civier, J. Chem. Soc., Perkin Trans. 1, 1977, 761.

24 M. S. Poonian and E. F. Nowoswiat, J. Org. Chem., 1980, 45, 203.
25 N. Katagiri, N. Tabei, S. Atsuumi, T. Haneda and T. Kato, Chem. Pharm. Bull., 1985, 33, 102.
26 Y. S. Sanghvi, N. B. Hanna, S. B. Larson, J. M. Fujitaki, R. C. Willis, R. A. Smith, R. K. Robins and G. R. Revankar, J. Med. Chem., 1988, 31, 330.
27 G. Y. Shen, R. K. Robins and G. R. Revankar, Nucleosides, Nucleotides, 1991, 10, 1707.
28 E. Fischer, Ber. Dtsch. Chem. Ges., 1914, 47, 1377
29 A. A. Tashpulatov, I. Rakhmatullaev, V. A. Afanas'ev and N. Ismailov, Zh. Org. Khim., 1988, 24, 1893.

30 M. J. Camarasa, P. Fernandez-Resa, M. T. Garcia-Lopez, F. G. De Las Heras, P. P. Mendez-Castrillon and A. San Felix, Synthesis, 1984, 509.
31 I. Yamamoto, K. Fukui, S. Yamamoto, K. Ohta and K. Matsuzaki, Synthesis, 1985, 686.
32 H. Ogura and H. Takahashi, Heterocycles, 1982, 17, 87.
33 T. K. Lindhorst and C. Kieburg, Synthesis, 1995, 1228.
34 A. B. El-Gazar and J. C. Jochims, unpublished results.
35 G. L'abbé, G. Verhelst, L. Huybrechts and S. Toppet, J. Heterocycl. Chem., 1997, 14, 515.
36 G. L'abbé, G. Verhelst and S. Toppet, J. Org. Chem., 1976, 41, 3403.
37 G. M. Shutske and M. N. Agnew, J. Heterocycl. Chem., 1981, 18, 1025.

38 T. Somorai, P. Dvortsak, J. Lango and J. Reiter, Acta Chim. Acad. Sci. Hung., 1983, 114, 23.
39 P. J. Kothari, V. I. Stenberg, S. P. Singh, S. S. Parmar and R. W. Zoellner, J. Heterocycl. Chem., 1980, 17, 637.
40 P. J. Kothari, V. I. Stenberg, S. P. Singh and S. S. Parmar, Spectrosc. Lett., 1978, 11, 979.
41 A. R. Katritzky, H. Faid-Allah, H. Aghabozorg and G. J. Palenik, Chem. Scr., 1984, 23, 134.
42 M. J. Mintz and C. Walling, Org. Synth., 1973, Coll. Vol. V, p. 184.
43 J. K. Rasmussen and S. M. Heilmann, Synthesis, 1978, 219.
44 M. W. Moon, J. Org. Chem., 1972, 37, 383.
45 S. Goldschmidt and B. Acksteiner, Chem. Ber., 1958, 91, 502.
46 E. Benzing, Justus Liebigs Ann. Chem., 1960, 631, 1.
47 D. S. Malament and J. M. McBride, J. Am. Chem. Soc., 1970, 92, 4586.

48 W. Duismann, H.-D. Beckhaus and C. Rüchardt, Justus Liebigs Ann. Chem., 1974, 1348.
49 R. G. Neville and J. J. McGee, Inorg. Synth., 1966, 8, 27.
50 A. Müller and A. Wilhelms, Ber. Dtsch. Chem. Ges., 1941, 74, 698.

Paper 7/07079I
Received 30th September 1997 Accepted 4th December 1997

[^0]: † E-Mail: Johannes.Jochims@uni-konstanz.de

